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ABSTRACT
Recent studies have noted that vertex degree in the au-
tonomous system (AS) graph exhibits a highly variable dis-
tribution [15, 22]. The most prominent explanatory model for
this phenomenon is the Barabási-Albert (B-A) model [5, 2].
A central feature of the B-A model is preferential connectivity
— meaning that the likelihood a new node in a growing graph
will connect to an existing node is proportional to the existing
node’s degree. In this paper we ask whether a more general
explanation than the B-A model, and absent the assumption
of preferential connectivity, is consistent with empirical data.
We are motivated by two observations: first, AS degree and
AS size are highly correlated [11]; and second, highly vari-
able AS size can arise simply through exponential growth. We
construct a model incorporating exponential growth in the size
of the Internet, and in the number of ASes. We then show via
analysis that such a model yields a size distribution exhibiting
a power-law tail. In such a model, if an AS’s link formation is
roughly proportional to its size, then AS degree will also show
high variability. We instantiate such a model with empirically
derived estimates of growth rates and show that the resulting
degree distribution is in good agreement with that of real AS
graphs.

�M. Fayed, J. Byers and M. Crovella are with the Dept. of
Computer Science at Boston University and are supported in
part by NSF grant ANI-9986397 and NSF CAREER award
ANI-0093296. E-mail: fmfayed,byers,crovellag@cs.bu.edu.
P. L. Krapivsky and S. Redner are with the Dept. of Physics,
as well as the Center for BioDynamics and the Center for
Polymer Studies, at Boston University and are supported by
grants NSF DMR9978902 and ARO DAAD19-99-1-0173. E-
mail: fpaulk,rednerg@bu.edu. D. Finkel is with the Dept. of
Computer Science at Worcester Polytechnic Institute. E-mail:
dfinkel@cs.wpi.edu.

1. INTRODUCTION
Many aspects of the Internet’s structure are relatively unknown.
These gaps in our knowledge pose problems when attempting
to construct representative network topologies for simulation
and modeling. In addition, filling these gaps may shed light on
the forces behind the Internet’s growth and the ways in which
the network may fail.

One aspect of the Internet’s structure that has drawn great
interest is the autonomous system (AS) graph (the graph in
which vertices represent ASes and edges represent AS-AS peer-
ing relationships). A particularly surprising aspect of these
graphs is that vertex degree generally possesses a highly vari-
able distribution [15, 22].

In discussing properties of the AS graph, it is useful to draw a
distinction between high variability and power-law tails. High
variability is a qualitative notion, referring to a probability dis-
tribution showing non-negligible values over a wide range of
scales (typically at least three orders of magnitude). On the
other hand, a distribution p(�) with power-law tails has the for-
mal property that:

p(x) � x��

with � > 0, and where a(x) � b(x) means that limx!1

a(x)=b(x) = c.

Some authors have argued that AS vertex degree is well mod-
eled as having power-law tails [15, 22]. Others have sug-
gested that vertex degree does not clearly exhibit power-law
tails, although it is highly variable [9]. Since such highly-
variable distributions do not arise in simple random graphs,
and since power-law tails do provide a simple (albeit crude)
approximation for the behavior of the true distribution, a num-
ber of papers have proposed mechanisms (more complicated
than purely random connection) that may give rise to power-
law degree distributions in graphs [5, 20, 19].

The most prominent model attempting to explain the emer-
gence of power-law degree distributions is the Barabási-Albert
model (or B-A model) [5, 2]. In fact, it has been considered in
a number of papers as a model for AS graphs [3, 7, 27, 24, 32].
The B-A model assumes the network is formed through incre-
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mental addition of nodes. In the simplest form of the model, a
new node forms a connection to an existing node with proba-
bility proportional to the existing node’s degree. This prefer-
ential connectivity leads to a “rich get richer” phenomenon in
which high degree nodes tend to increase in degree faster than
low degree nodes.

In this paper we examine whether explanations more general
than the B-A model may suffice to explain highly variable de-
gree distributions in the AS graph. We are motivated by two
observations. First, the authors in [11] point out that AS de-
gree is strongly correlated with AS size (measured in number
of nodes) — and that AS size also shows a highly variable
distribution. Second, we observe that during the last 10 years
or so, the Internet has undergone exponential growth in both
number of nodes and number of ASes. Under such conditions,
we show here that highly variable AS sizes (and, presumably
as a consequence, highly variable AS degrees) may readily
arise due to exponential growth alone.

We explore these observations in this paper by constructing a
simple growth model for AS graphs. Our model makes three
assumptions: (1) exponential growth in the number of hosts in
the network; (2) exponential growth in the number of ASes in
the network; and (3) an approximately proportional relation-
ship between AS size and degree. The resulting model shows
that highly variable AS degrees may easily arise without pref-
erential connectivity, and in fact without any global knowledge
of network state by individual ASes. Indeed, in our model, the
methods by which ASes select peering partners can remain
completely unspecified.

In our model, M (the total number of hosts) and N (the to-
tal number of ASes) are described by the simple linear growth
equations dN=dt = qN and dM=dt = pM + qN , where q
and p are the growth parameters. We show that in the asymp-
totic time limit, this model leads to a stationary size distribu-
tion with power-law tails. We then show that if these growth
rules are used to construct a graph, such that as each AS grows
it forms links to other ASes in approximate proportion to its
own size, then the resulting degree distribution also shows
high variability.

We validate the degree distributions produced by this simple
model using empirical measurements of AS degree distribu-
tions. For this purpose we use measurements from BGP tables
stored at Routeviews [28], as well as overlay maps produced
by mapping routers from the Mercator [17] and Skitter [30]
datasets to their corresponding ASes. We find that the result-
ing degree distributions in our simulated graphs are in good
agreement with empirical data.

We conclude that, for topology generation, it is not necessary
to incorporate preferential connectivity in order to generate
highly variable AS degree distributions. This leaves the door
open for more practically justified bases for forming inter-AS
links, e.g., based on economic and geographical considera-
tions.

In summary, in this paper we explore a model for the AS graph
that is more general than the B-A model, and is based on em-
pirical observations of Internet growth dynamics. It allows for
inter-AS connections to be formed in a way that need not be
based on AS degree. We show that it yields highly-variable
degree distributions, and that its outputs agree well with em-
pirical measurements of AS graph degree distribution.

2. RELATED WORK
Until recently, Internet topologies have been generated using
random and hierarchical models. Among the more significant
of these is work due to Calvert et al. [8]. That paper proposes
generating smaller domain-like networks and connecting them
together to create a hierarchical structure whose properties are
specified by input parameters. Unfortunately, these random
and hierarchical approaches fail to capture many significant
attributes of Internet topology as well as the power-law models
[32, 24] discussed below.

Since attention was drawn to power-laws in Internet topologies
by [15], modeling efforts have shifted to reproducing these
power-law properties. The most notable effort in this direction
has been the Barabási-Albert preferential attachment model
[5]. This model was first formulated and solved by Simon
[29] and further developed by Price [12, 13]. In this model,
the network is formed through incremental addition of nodes.
The model’s key assumption is that a new node forms a con-
nections to an existing node based the existing node’s degree.
The probability that a new node will connect to an existing
node i is proportional to �(i) = ki=�jkj , where ki is the de-
gree of node i. The resulting rate at which nodes acquire new
edges is given by Æki=Æt = ki=2t, where t is the time elapsed
from the start of the process. The resulting degree distribution
exhibits a power-law tail, with a fixed exponent of � = 3.

Later work has built upon and extended the B-A model. The
same authors in [3] extended the model to allow re-wiring, in
which edges may also be deleted or moved at each timestep;
this allows the exponent to vary. The work in [27] investi-
gates the case where only a subset of all nodes in the network
are available for connection. With only slight modifications
to the B-A model they show that a power-law degree distri-
bution emerges. Additionally, a “generalized linear prefer-
ence” model is proposed in [7] that better matches the cluster-
ing behavior and path lengths of empirical Internet measure-
ments. These extensions have improved the flexibility of the
B-A model, albeit with a corresponding increase in complex-
ity.

The generation of power-laws through random graph models
has also received considerable recent attention. An overview
of existing models appears in [1], along with a method which
generalizes all of them; this family of models is analyzed in
[21]. In these models, nodes are periodically added to the
graph with some probability and are initially assigned an in-
weight and out-weight of 1. At each timestep, t, with some
fixed probability, a new directed edge is created between nodes
i and j. The probability of selecting an edge from i to j
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is in proportion to i’s out-weight and j’s in-weight, respec-
tively. Then, the out-weight of i and the in-weight of j are
increased by 1; hence, at every timestep the total in-weight (or
out-weight) in the system is exactly t. This general method
can generate graphs with arbitrary degree distributions, but are
not proposed as realistic models for the dynamics of Internet
growth.

In contrast to the approaches above which focus on reproduc-
ing statistical properties, another family of models explores
the implications of optimization-based algorithms for network
structure. One such model has been suggested in [14]; it as-
sumes that nodes arrive uniformly at random within some Eu-
clidean space, and the newly created edges attempt to balance
the distance d from its new neighbour with the desire to min-
imize the average number of hops h to other nodes. A new
node i forms an edge to j by minimizing the weighted sum
 �dij+hj . The resulting degree distribution exhibits a power-
law tail. A second optimization-based model is described in
[4]; this paper explores a similar heuristic but at the ISP level.

The investigation in [11] evaluates the merits of the B-A model
and its applicability to the Internet. The authors conclude
that, while the B-A family of models do succeed in produc-
ing power-laws, the model itself is not representative of the
dynamics that drive Internet evolution: its growth processes
(preferential connectivity) do not match those observed in the
Internet. Also, they present evidence to suggest that AS-level
degree distribution is not a pure power-law, though still highly
variable. Based on these observations, together with evidence
in [31] which links degree to size, [11] suggests that other (per-
haps simpler) mechanisms decide the evolution of the Internet.

The work in this paper shows that preferential connectivity, or
indeed any dependence on degree in making connection deci-
sions, is not necessary for power-law degree distributions to
emerge. Furthermore, our paper is the first model that mod-
els highly variable degree distributions as well as the size and
growth of autonomous systems themselves.

3. A SIMPLE GROWTH MODEL
In this section we first motivate our model using observations
regarding the rates of growth of ASes and hosts over time. We
then analyze the model and explore its properties.

3.1 Exponential Growth
We start by assessing the growth of the number of ASes in the
Internet. For this, we look to a history of routing number al-
locations made publicly available by the Internet registrars1.
These agencies (ARIN, RIPE, and APNIC) are collectively
responsible for assigning all Internet routing numbers. Each
publishes a table of every AS number2 and IP block it allo-
cates, and the date the allocation was made.

1The strengths and drawbacks of various data sources for AS
tracking are discussed in [16].
2RIPE does not publish AS number allocations, though many
of these allocations have been recorded by ARIN.

Using these tables, we can measure the number of AS num-
bers allocated at any point in time. The result is shown in
Figure 1, on (a) a linear scale and (b) a semi-log scale. Here
we assume that allocations provide a good estimate for rate
of growth in total number of ASes (since we are primarily in-
terested in the overall rate of growth). Fitting a line to this
logscale plot shows that, over the recent past, AS numbers
have indeed been allocated at an exponentially growing rate.
We estimate the rate of growth by the slope of the linear re-
gression fit to the curve, or approximately 8:7 � 10�4 (units
are ln(ASes)/day).

The registries provide a good record of AS births, but it is in-
accurate to use their records of allocated IP blocks to estimate
growth of hosts in the Internet, because most IP blocks are
not fully utilized. The best estimate of the number of Internet
hosts seems to be that of the widely cited Internet Software
Consortium’s “Internet Domain Survey” (IDS) project. The
host count they develop is based on a reverse DNS process;
details can be found at [18].

Using the numbers published by IDS, we plot host growth in
Figure 2 (again, (a) is linear scale, and (b) is semi-log scale).
Although the linear regression of the whole curve fits reason-
ably well, we note that the slope of the curve starting about
1996 is noticeably different from the slope before that point.
Using the linear fit shown in the figure, we estimate the the
more conservative growth rate (the rate post 1996) to be about
1:1� 10�3 (units are ln(hosts)/day).

We emphasize that while host count may well underestimate
the actual number of hosts on the Internet, we are primarily
interested in estimating the rate of growth represented by the
slope of the curve.

Figures 1 and 2 provide strong evidence of exponential growth
both in size of the Internet and number of ASes. Next we con-
struct a simple evolutionary model which relies on the obser-
vation that both measures grow exponentially.

3.2 Model Development and Analysis
We wish to construct a model which builds on the observa-
tions that the number of ASes and the number of hosts in the
Internet have both grown exponentially in the recent past. Let
N(t) be the total number of ASes and M(t) be the total num-
ber of hosts (or ‘mass’) in the system. The simplest growth
model consistent with the observations in the previous section
is mathematically described by linear equations

dN

dt
= qN;

dM

dt
= pM + qN: (1)

Here q is the rate of creation of new ASes and p is the rate of
creation of new nodes. When a new AS is created, the host is
given that new label, explaining the qN term in the left equa-
tion in (1). (We assume that there is no merging of ASes;
moreover, we assume that links do not affect growth processes,
and that hosts and links never disappear. For a model that in-
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Figure 1: Growth in the number of Autonomous Systems.
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Figure 2: Growth in the number of Internet Hosts
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cludes AS mergers, see [16].) Solving for N and M gives

N(t) = N(0) eqt; (2)

M(t) = Aept + BN(t); (3)

with A;B being simple functions of the initial data, and the
parameters p and q. (At the special point p = q the coeffi-
cients diverge (A = B =1), reflecting that the exact solution
is actually a linear combination of ept and t ept.) Thus the av-
erage AS size hsi � M(t)=N(t) could exhibit the following
asymptotic behaviors:

hsi �

8><
>:

finite when p < q;

lnN when p = q;

N (p�q)=q when p > q:

(4)

In [16] we show that the average AS size grows over time (and
withN ), in agreement with measurements showing that p > q.

Let Ns(t) be the number of ASes with s nodes. This size
distribution satisfies the rate equation3

dNs

dt
= p [(s� 1)Ns�1 � sNs] + qNÆs;1: (5)

We already know N(t) = N(0) eqt. Solving Eqs. (5) recur-
sively and expressing in terms of N rather than t yields

Ns = nsN +
sX

j=1

CsjN
�jp=q: (6)

The coefficients Csj depend on initial conditions while ns are
universal. Asymptotically, only the linear term nsN matters.
To determine this dominant contribution, we insert Ns(t) =
nsN(t) into Eq. (5). We arrive at the recursion relation�

s+
q

p

�
ns = (s� 1)ns�1 (7)

for s � 2, while for s = 1 we have n1 = q=(q + p). The
solution to recursion (7) reads

ns =
q

q + p

�(s) �
�
2 + q

p

�
�
�
s+ 1 + q

p

� : (8)

Asymptotically, the ratio of gamma functions simplifies to the
power law,

ns � C s��; (9)

with � = 1 + q=p and C = q
q+p

�
�
2 + q

p

�
. That is, the

model yields an AS size distribution exhibiting a power-law
tail with exponent �(1 + q=p):

3In the large time limit, the random variables Ns(t) become
highly localized around corresponding average values.

4. AS DEGREE FORMATION
The previous section showed that a power-law size distribution
emerges in the presence of exponential growth of ASes and
hosts. In this section we extend this idea to incorporate AS
degree.

The key assumption we make is that as an AS grows, it will
establish links with other ASes. We show that if link forma-
tion occurs in rough proportion to an AS’s growth, then the AS
degree distribution will show high variability. More precisely,
if at each time step a new node is added to an AS it forms
an inter-AS link to some other randomly chosen AS with a
fixed probability, then AS degree distribution will show high
variability. Furthermore, this need only be in “rough propor-
tion;” for example, the result still holds if connection proba-
bility varies with the log of the AS size.

Any such link formation process is simple since it only de-
pends on growth, it is flexible since there are no influencing
agents other than size, and no global knowledge of other AS
degrees is required to make link formation decisions.

The resulting process is detailed in the algorithm below. Recall
the notation from Section 3.2 where t is time and N(t) is the
number of ASes in the system. Let Mi(t) be the number of
hosts in AS i, and ti be the time AS i is introduced into the
system. At each timestep t two kinds of events occur: some
new ASes are born, and existing ASes grow. Starting at t = 1:

i. Calculate the total number of ASes according toN(t) =
eqt.

ii. Introduce bN(t)c � bN(t � 1)c new ASes with a size
of 1 and out-degree of 1, where the neighboring AS is
chosen uniformly at random.

iii. Calculate the number of total hosts within AS i accord-
ing to Mi(t) = ep(t�ti).

iv. For each AS i, insert bMi(t)c�bMi(t�1)c new hosts.
Each new host creates an inter-AS edge with probability
x, and if an edge is created, then invoke a select oper-
ation to determine to whom the new AS-to-AS link is
created.

The select operation is left unspecified to emphasize the flex-
ibility of the link formation process and its dependence only
on the AS size. We consider only the simplest selection oper-
ation, where a target AS is chosen uniformly at random.

Even though this is a random connection process, ASes that
are larger in size will also have higher degree. Thus, the de-
gree distribution that results should be highly variable. We
show in the following sections that a highly variable degree
distribution does result, and that this distribution fits well when
compared against distributions observed in the Internet.
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5. VALIDATION
We validate our analysis and simulation results against empir-
ical degree distributions in the following sections.

5.1 Empirical Data Sources
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Figure 3: Degree Distributions Inferred from 4 Sources.

There are a number of sources from which we can draw AS-
level degree distribution. We infer empirical degree distribu-
tion through two distinct methods, applied to three different
sources.

The first method is to infer AS degrees from BGP tables. For
this purpose we use BGP tables from the RouteViews project
[28] collected in April 2001 and February 2002. An entry in
a BGP table consists of an IP block represented by its prefix,
followed by a sequence of ASes (an AS path) that must be tra-
versed to reach an IP address within that range. We can infer
an adjacency in the AS-level graph for a pair of ASes when-
ever they appear in succession within any path. While this
inference method typically avoids false positives (adjacencies
which are not actually present, but appear to be present), it
suffers from false negatives, since not all AS adjacencies are
advertised across BGP [11].

A second method for determining AS degrees is to annotate
a router-level map with each router’s associated autonomous
system. Nodes in the router-level graph are labeled using IP
addresses. In the overlay produced by annotating the router-
level graph, each node is further labeled with its assocated AS.
The approach is detailed in [10]; we summarize the approach
here. An IP is associated with an autonomous system by per-
forming a lookup in BGP tables. First, find the longest match-
ing prefix of an IP address within the BGP table; the last entry
in the path vector is the number of the AS which owns that IP
address. A complete inspection of every edge in the annotated
router-level graph reveals an inter-AS edge wherever any pair
of nodes are labeled with distinct AS numbers.

This method has numerous advantages over AS maps inferred
from BGP tables directly. It provides an AS map at a finer

granularity; aggregated ASes are revealed, as are multiple links
between ASes. However, this method suffers from the follow-
ing drawback. Any single BGP table is potentially incomplete
and can be limited by path hiding from parent ASes (in order
to reduce message and table sizes). Sets of BGP tables are
used to reduce the magnitude of this problem, with the belief
that more BGP tables reveal more information. However, no
AS can observe the existence of another AS which is hidden
by its parents.

We draw on router-level maps gathered from the Mercator
project [17] in August 2001, and another provided by the Skit-
ter project [30] gathered in January 2002. Statistics, dates, and
sources of all four datasets are summarized in Table 1.

Source ASes Edges Date Method
Route Views 10854 47847 04/01 BGP Adjacenies
Route Views 12875 57385 02/02 BGP Adjacenies
Mercator 3478 13590 08/01 AS Overlay
Skitter 9206 38334 01/02 AS Overlay

Table 1: Summary of Data Sources

The degree distributions plotted in Figure 3 show that all meth-
ods and sources yield similar results. For subsequent compar-
isons, we use the distribution drawn from the autonomous sys-
tem overlay constructed from the Skitter dataset collected in
January 2002 as a baseline for comparison against simulation
results.

5.2 Constant Connectivity Models
Section 3.2 shows that the size distribution that results from
our model has a power-law tail. However, since the growth
model does not directly describe degree, we turn to our simu-
lation to determine the influence of size and growth on degree.

The simulation is executed using the algorithm in Section 4
using rates p = 1:1 � 10�3 and q = 8:7 � 10�4 estimated
in Section 3. The degree distribution predicted by our model
is plotted against observed degree distributions in Figure 4.
We found empirically that using fixed connection probability
x = 0:10 results in vertices of our simulated graphs having
a roughly commensurate average degree to that of the Skitter
dataset. Where the discrepancy does occur, the general ten-
dency is for our model to underestimate the degree of small to
medium sized ASes, while overestimating the degree of larger
ASes.

Figure 4 shows that the predicted degree distribution is re-
markably similar to that of the Skitter dataset. Discrepancies
can potentially be removed by refining the decision processes
used to form AS to AS connections in the model. In the fol-
lowing section, we explore a refined model that accounts for
the size of the AS when determining the relationship between
growth and link formation.
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5.3 Size-Based Connectivity Models
The relationship between predicted and empirical distributions
shown in Figure 4 suggest that there is room for other practical
influences on inter-AS link formation. Here we discuss an ap-
proach that takes into account the actual size of the AS when
choosing to create new links.

We presuppose the following notion: as an AS grows, the ratio
of its degree to its size will shrink, and so a constant proba-
bility when deciding to create new links may not best relate
degree to size. Intuitively, the ratio between the degree of an
AS and its size is analogous to surface-to-volume ratio. In
graph-theoretic terms, this ratio is often referred to as the con-
ductance of a subgraph. Thus, we define the conductance of
an autonomous system i with size Mi and out-degree di to be
di
Mi

.

Observations of conductance are estimated from Mercator and
Skitter datasets discussed in Section 5.1, and shown in Ta-
ble 5.3. This table shows that as an autonomous system grows,
the average conductance shrinks. While the actual conduc-
tance of ASes of a given size varies considerably, this trend
holds on average. Note that ASes of size 1 are excluded from
the smallest range since an AS of size 1 must have conduc-
tance of at least 1, and so may bias observations. Also, aver-
age conductance in the largest ASes appear to break this trend.
We believe that this may be an artifact of noise from a small
number of data points.

We believe that this decrease in conductance is natural, driven
by the decreasing necessity to add inter-AS links as an AS
grows. For example, as previously mentioned, an AS of size
1 must have a minimum degree of 1 (otherwise it is not con-
nected to other ASes, and hence cannot be a part of the AS-
level map). We speculate that it is more often the case that
hosts are added to a closed network to increase the capacity
and range of the network itself, rather than to connect to other
ASes, and so a connection probability that decreases as an AS

Data Points Average Conductance
Size Range Mercator Skitter Mercator Skitter
2� 10 1404 4254 0.492 0.866
11� 100 1429 3502 0.242 0.596
101� 1000 359 1050 0.134 0.313
1001� 10000 38 131 0.108 0.213
10001� 100000 1 10 0.20 0.249

Table 2: Conductance of ASes

grows is reasonable.

The ratios and ranges in Table 5.3 show diminishing conduc-
tance as AS size increases. To better fit the data observed in
Table 5.3, we applied a logarithmic correction factor to imple-
ment a “diminishing probability” function, L. This function
takes the size of the autonomous system Mi, and a fixed prob-
ability x as parameters, and returns a probability value:

L(x;Mi) =

(
x when Mi < 10;

x
log10(Mi)

otherwise.
(10)

As before, we use the simple select operation which returns a
neighboring AS chosen uniformly at random.
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Figure 5: Diminishing Probability where x = 0:20.

The distribution that results when applying the diminishing
probability function is plotted against Skitter data in Figure 5,
using x = 0:20, the value providing the best fit. The two
curves are nearly identical, sharing a similar slope, and are
virtually indistinguishable throughout the entire body of the
distribution.

6. CONCLUSIONS
In this paper we have explored a model for how highly variable
degree distributions may arise in the AS graph. It is instructive
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to compare this model with the B-A model.

Like the B-A model, we assume that high variability has arisen
via a “rich get richer” phenomenon resulting from an exponen-
tial growth process. However the B-A model assumes prefer-
ential connectivity, meaning that new nodes probabilistically
prefer to connect to well-connected existing nodes. Besides
requiring that each AS be aware of the degree of each other
AS (a strong assumption of global knowledge), the B-A model
strongly constrains the resulting connection pattern. This is
restrictive; as discussed in [26], many graph realizations are
consistent with a given degree sequence, and different realiza-
tions may have very different properties. In fact, [25] shows
that the AS graph exhibits a high degree of clustering, an ef-
fect that is not captured by the particular connection pattern
created by the B-A model.

In contrast, the assumption in our model is that AS sizes are
the underlying cause of high variability, and that a large AS
will naturally tend to have a large degree. From this stand-
point, our model allows for a much wider range of connection
patterns than the B-A model, since the degree of an AS grows
as a function of its size, but the choice of which AS to con-
nect to can be specified independently, as a separate selection
operation. In this paper we have explored the selection opera-
tion in which growing ASes choose peering partners uniformly
at random; however we expect that any choice of peering part-
ners that is made without regard to degree (and including those
that exhibit a high degree of clustering) will likely show char-
acteristic high variability.

Our results demonstrate that a simple and natural model incor-
porating exponential growth alone is sufficient to drive both a
highly variable AS size distribution and a highly variable AS
degree distribution. We motivated this model with datasets
that demonstrate exponential growth both in the number of
hosts and the number of ASes, and validated the model by
comparing the degree distribution our model predicts against
observed degree distributions drawn from BGP tables and AS
overlay maps. We also provide an analysis of the power-law
tail of the AS size distribution that results when our methods
are employed.

We have integrated this model into the publicly available
BRITE [6, 23] topology generation framework. In future
work, we intend to investigate selection operations that in-
corporate real-world considerations such as locality, clustering
and performance optimization, to provide an even more real-
istic AS growth model. As part of this effort, we are mining
AS time-series data extracted from BGP logs to better under-
stand the underlying nature of AS growth, interconnection and
merging over time [16].
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